Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt
polubienia

Zadanie nr 22, matura 2013 maj

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Niech \( p \) oznacza prawdopodobieństwo zdarzenia, że iloczyn liczb wyrzuconych oczek jest równy \( 5 \). Wtedy
A. \( p = \frac{1}{36} \) B. \( p = \frac{1}{18} \) C. \( p = \frac{1}{12} \) D. \( p = \frac{1}{9} \)

Prawdopodobieństwo policzymy używając wzoru: \[ P(A)=\frac{|A|}{|\Omega|} \] Gdzie \( A \) to zdarzenie, którego prawdopodobieństwo liczymy, a \( \Omega \) to zbiór zdarzeń elementarnych

Do zbioru \( \Omega \) należeć będą wyniki dwóch rzutów kostką. Oznaczmy elementy tego zbioru jako \( (a,b) \), gdzie \(a\) to wynik pierwszego rzutu, a \(b\) to wynik drugiego rzutu, przykładowo element \( (2,5) \) reprezentuje sytuację, w której w pierwszym rzucie wypadły dwa oczka, a w drugim pięć oczek. Zarówno \(a\) jak i \(b\) mogą przyjąć \(6\) różnych wartości, więc elementów postaci \( (a,b) \) będzie \( 6\cdot6 \), czyli \( 36 \).
Liczba elementów zbioru \( \Omega \) jest więc równa: \[ |\Omega|=6\cdot 6 = 36 \]

Zajmiemy się teraz zdarzeniem \( A \) polegającym na tym, że iloczyn liczby oczek z pierwszej i drugiej kostki jest równy \( 5 \). Wypiszmy wszystkie elementy tego zbioru, dalej używając konwencji \( (a,b) \). \[ A=\{ (1,5),(5,1) \} \] I to wszystko - nie da rady inaczej rzucać kostkami, aby iloczyn oczek dał liczbę \( 5 \). Widzimy, że zbiór \(A\) ma \(2\) elementy \[ |A|=2 \]

Policzymy prawdopodobieństwo: \[ p = P(A)=\frac{|A|}{|\Omega|}=\frac{2}{36}=\frac{1}{18} \]

Prawidłowa odpowiedź to odpowiedź B.

Drukuj

Polub nas
Rozwijaj swoje SocialMedia!
Skorzystaj z Naszego nowego Projektu!
Kup Like na Facebook, Instagram, Youtube!
like like like