Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt
Korepetycje u autora przez internet!
Szukasz korepetycji na najwyższym poziomie bez wychodzenia z domu w świetnej cenie? Kliknij tutaj
Przydatne materiały
Kontakt z nami
Kontakt
ZadaniaMatematyczne.pl
[email protected]
Napisz wiadomość

Zadanie nr 15, matura 2012 maj

Pole kwadratu wpisanego w okrąg o promieniu \(5\) jest równe
A. \( 25 \) B. \( 50 \) C. \( 75 \) D. \( 100 \)

Rozrysujmy sytuację z treści zadania. Promień będzie połową przekątnej kwadratu. image/svg+xml r r a

Zauważamy trójkąt prostokątny o bokach \(r\), \(r\) i \(a\). Wiemy, że \(r=5\), więc korzystając z twierdzenia Pitagorasa możemy wyliczyć \(a^2\), czyli pole kwadratu lub \(a\), czyli długość boku kwadratu. \[ r^2+r^2=a^2 \\ 5^2+5^2=a^2 \\ 25+25=a^2 \\ 50=a^2 \] W tym momencie możemy zauważyć, że policzyliśmy już pole kwadratu. Jeżeli tego nie zauważyliśmy, możemy liczyć dalej: \[ \begin{matrix} 50=a^2 & / \sqrt{\hspace{1em}} \end{matrix} \\ a=\sqrt{50} \] Pole kwadratu, gdy \(a\) jest długością jego boku wyraża się wzorem \(a\)^2. Mamy więc: \[ P_\square=a^2=\sqrt{50}^2=50 \]

Prawidłowa odpowiedź to B

Drukuj

Rozwiązanie wideo

Polub nas