Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt
polubienia

Zadanie nr 6, matura 2012 sierpień

Wskaż rysunek, na którym jest przedstawiony zbiór rozwiązań nierówności \( |x+4|\le7 \).
A. -11 3 x
B. -3 11 x
C. -11 3 x
D. -3 11 x

Aby rozwiązać zadanie skorzystamy z faktu, że \( |\class{color1}{a}-\class{color2}{b}| \) to odległość na osi liczbowej liczby \( \class{color1}{a} \) od liczby \( \class{color2}{b} \). Jako że \( |x+4|=|\class{color1}{x}-\class{color2}{(-4)}| \), to \( |x+4| \) to odległość na osi liczbowej liczby \( x \) od liczby \( -4 \).

W treści zadania mamy nierówność \( |x+4|\le7 \), zatem, traktując wartość bewzględną tak, jak opisaliśmy przed chwilą możemy to odczytać tak: odległość liczby \( x \) od liczby \( -4 \) na osi liczbowej jest mniejsza lub równa \( 7 \). Punkty graniczne będą od liczby \( -4 \) odległe od \( 7 \). Zatem będą to \[ -4+7 = 3 \] oraz \[ -4-7 = -11 \] Te punkty na osi liczbowej są odległe od liczby \( -4 \) o \( 7 \). Interesują nas liczby, których odległość od \( -4 \) jest mniejsza lub równa \( 7 \), czyli liczby większe lub równe \( -11 \) i mniejsze lub równe \( 3 \), \[ x\in\langle -11,3 \rangle \] Nawiasy przedziału są trójkątne, jako że graniczne wartości także uwzględniamy (liczby \(-11\) i \(3\) też są rozwiązaniami \). Na rysunku będzie to wyglądało następująco -11 3 x

Prawidłowa odpowiedź to odpowiedź A.

Drukuj

Polub nas
Rozwijaj swoje SocialMedia!
Skorzystaj z Naszego nowego Projektu!
Kup Like na Facebook, Instagram, Youtube!
like like like