Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt
polubienia

Zadanie nr 9, matura 2012 sierpień

Zbiorem rozwiązań nierówności \( x(x+6)<0 \) jest
A. \( (-6,0) \) B. \( (0,6) \)
C. \( (-\infty,-6)\cup(0,+\infty) \) D. \( (-\infty,0)\cup(6,+\infty) \)

Zauważamy, że mamy do czynienia z nierównością kwadratową postaci \( f(x)<0 \), gdzie \( f(x) \) to funkcja kwadratowa zapisana w postaci iloczynowej. Postać iloczynowa to \[ f(x)=\class{color1}{a}(x-\class{color2}{x_1})(x-\class{color2}{x_2}) \] Gdzie \(\class{color1}{a}\) to współczynnik \(\class{color1}{a}\) z postaci ogólnej, a \(\class{color2}{x_1}\) i \(\class{color2}{x_2}\) to pierwiastki tej funkcji.

Nasza funkcja to \[ f(x)=x(x+6)=\class{color1}{1}(x-\class{color2}{0})(x-\class{color2}{(-6)}) \] Odczytamy miejsca zerowe i współczynnik \( \class{color1}{a}\). \[ f(x)=\class{color1}{a}(x-\class{color2}{x_1})(x-\class{color2}{x_2})\\ f(x)=\class{color1}{1}(x-\class{color2}{0})(x-\class{color2}{(-6)})\\[1em] \class{color1}{a}=1\\ \class{color2}{x_1}=0\\ \class{color2}{x_2}=-6 \] Znamy miejsca zerowe funkcji oraz wiemy, że ramiona paraboli będą skierowane w górę, ponieważ współczynnik \(\class{color1}{a}\) jest dodatni. Narysujemy wykres funkcji \( f(x) \). x -6 0 Na wykresie kolorem pomarańczowym zostały oznaczone te \(x\), dla których \(f(x)<0\), czyli te, dla których \(x(x+6)<0\) (wykres funkcji dla tych \(x\) znajduje się pod osią \(Ox\)). Widzimy, że jest to zbiór \( (-6,0) \).

Prawidłowa odpowiedź to odpowiedź A.

Drukuj

Polub nas
Rozwijaj swoje SocialMedia!
Skorzystaj z Naszego nowego Projektu!
Kup Like na Facebook, Instagram, Youtube!
like like like