Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt
Korepetycje u autora przez internet!
Szukasz korepetycji na najwyższym poziomie bez wychodzenia z domu?
Przydatne materiały
Kontakt z nami
Kontakt
ZadaniaMatematyczne.pl
[email protected]
Napisz wiadomość

Zadanie nr 3, matura 2012 sierpień

Liczba \( \text{log}_3 27-\text{log}_3 1 \) jest równa
A. \( 0 \) B. \( 1 \) C. \( 2 \) D. \( 3 \)

Zgodnie z definicją logarytmu mamy \[ \text{log}_3 27=c \Longleftrightarrow 3^c=27 \] Zatem szukamy liczby takiej, że po podniesieniu \( 3 \) do jej potęgi otrzymamy \( 27 \). Oczywiście \( 3^3=27 \), bo \( 3\cdot3\cdot3=27 \). Zatem \[ \text{log}_3 27=3 \] Analogicznie znajdziemy wartość \( \text{log}_3 1 \) \[ \text{log}_3 1=c \Longleftrightarrow 3^c=1 \] Każda liczba różna od zera podniesiona do zerowej potęgi da w wyniku \( 1 \), zatem także \( 3^0=1 \). Liczba \(c\) to w tym przypadku \( 0 \). Więc \[ \text{log}_3 1=0 \]

Przy użyciu tego, co napisaliśmy wcześniej rozwiążemy zadanie \[ \text{log}_3 27-\text{log}_3 1=3-0 = 3 \]

Prawidłowa odpowiedź to odpowiedź D.

Drukuj

Polub nas