Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt

Korepetycje u autora przez internet!
Szukasz korepetycji na najwyższym poziomie bez wychodzenia z domu?
Przydatne materiały
Kontakt z nami
Kontakt
ZadaniaMatematyczne.pl
[email protected]
Napisz wiadomość

Zadanie nr 19, matura 2012 sierpień

Wskaż równanie prostej przechodzącej przez początek układu współrzędnych i prostopadłej do prostej o równaniu \( y=-\frac{1}{3}x+2 \).
A. \( y=3x \) B. \( y=-3x \) C. \( y=3x+2 \) D. \( y=\frac{1}{3}x+2 \)

Równania prostych z odpowiedzi to równania prostej w postaci kierunkowej, czyli w postaci \[ y=\class{color1}{a}x+\class{color2}{b} \] Gdzie współczynnik \( \class{color1}{a} \) (współczynnik kierunkowy) decyduje o nachyleniu prostej, a współczynnik \( \class{color2}{b} \) to wysokość, na jakiej prosta przecina oś \(Oy\).

Z treści zadania wiemy, że prosta przechodzi przez początek układu współrzędnych, czyli przez punkt \( (0,0) \). Zatem przecina oś \(Oy\) na wysokości \( 0 \). Zatem \( \class{color2}{b} = 0 \), więc wiemy już, że prosta ma równanie \[ y=\class{color1}{a}x+0=\class{color1}{a}x \]

Policzymy współczynnik \( \class{color1}{a} \). Wiemy, że prosta jest prostopadła do prostej o równaniu \( y=-\frac{1}{3}x+2 \).
Wiemy, że dwie proste są prostopadłe gdy iloczyn ich współczynników kierunkowych jest równy \( -1 \). Mamy więc \[ \begin{matrix} -\frac{1}{3}\cdot \class{color1}{a} = -1 & /\cdot(-3) \end{matrix}\\ \class{color1}{a} = -1\cdot(-3)=3 \]

Zatem równanie prostej przechodzącej przez początek układu współrzędnych i prostopadłej do prostej o równaniu \( y=-\frac{1}{3}x+2 \) to \(y=3x\).

Prawidłowa odpowiedź to odpowiedź A.

Drukuj

Polub nas
Rozwijaj swoje SocialMedia!
Skorzystaj z Naszego nowego Projektu!
Kup Like na Facebook, Instagram, Youtube!