Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt
polubienia

Zadanie nr 15, matura 2012 sierpień

W trójkącie prostokątnym dane są długości boków (zobacz rysunek). Wtedy a 2√10 9 11
A. \( \text{cos}\alpha=\frac{9}{11} \) B. \( \text{sin}\alpha=\frac{9}{11} \) C. \( \text{sin}\alpha=\frac{11}{2\sqrt{10}} \) D. \( \text{cos}\alpha=\frac{2\sqrt{10}}{11} \)

Wśród odpowiedzi występują sinus oraz cosinus kąta alfa. Policzymy zatem ich wartości

Zgodnie z definicją sinus kąta \( \alpha \) to stosunek długości przyprostokątnej leżącej naprzeciw kąta \( \alpha \) do długości przeciwprostokątnej. Przyprostokątna leżąca naprzeciw kąta \( \alpha \) ma długość \( 2\sqrt{10} \), a przeciwprostokątna ma długość \( 11 \). Mamy zatem \[ \text{sin}\alpha=\frac{2\sqrt{10}}{11} \]

Zgodnie z definicją cosinus kąta \( \alpha \) to stosunek długości przyprostokątnej leżącej przy kącie \( \alpha \) do długości przeciwprostokątnej. Przyprostokątna leżąca przy kącie \( \alpha \) ma długość \( 9 \), a przeciwprostokątna ma długość \( 11 \). Mamy zatem \[ \text{cos}\alpha=\frac{9}{11} \]

Prawidłowa odpowiedź to A.

Drukuj

Polub nas
Rozwijaj swoje SocialMedia!
Skorzystaj z Naszego nowego Projektu!
Kup Like na Facebook, Instagram, Youtube!
like like like