Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt
polubienia

Zadanie nr 13, matura 2010 maj

Liczba przekątnych siedmiokąta foremnego jest równa
A. \( 7 \) B. \( 14 \) C. \( 21 \) D. \( 28 \)

Narysujemy poglądowy siedmiokąt (to, że w zadaniu jest napisane, że w zadaniu mowa o siedmiokącie foremnym jak zobaczymy niewiele zmienia). A Dodatkowo na rysunku zaznaczony jest jeden wierzchołek oznaczony jako \( A \). Poprowadzono z niego wszystkie przekątne, jakie można poprowadzić z tego wierzchołka. Widzimy, że przekątne z tego wierzchołka wychodzą do wszystkich wierzchołków, z wyjątkiem jego samego i wierzchołków sąsiednich. Widzimy, że z dowolnego wierzchołka można poprowadzić \( 7-3=4 \) przekątne.
Mamy \( 7 \) wierzchołków, zatem liczba przekątnych będzie równa \[ L_p=\frac{7\cdot4}{2} \] Dzielimy przez dwa dlatego, że jedna przekątna wychodzi z dwóch wierzchołków, zatem jakbyśmy nie podzielili tej wartości każdą przekątną zliczalibyśmy dwukrotnie.
Mamy \[ L_p=\frac{7\cdot4}{2}=\frac{28}{2}=14 \]

Prawidłowa odpowiedź to B.

Tą samą drogą można dowieść, że w wielokącie o \(n\) kątach (czyli też \(n\) wierzchołkach) liczba przekątnych równa jest \( L_p=\frac{n(n-3)}{2} \).

Drukuj

Polub nas
Rozwijaj swoje SocialMedia!
Skorzystaj z Naszego nowego Projektu!
Kup Like na Facebook, Instagram, Youtube!
like like like