Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt

Korepetycje u autora przez internet!
Szukasz korepetycji na najwyższym poziomie bez wychodzenia z domu?
Przydatne materiały
Kontakt z nami
Kontakt
ZadaniaMatematyczne.pl
[email protected]
Napisz wiadomość

Zadanie nr 26, matura próbna 2012 listopad

Rozwiąż równanie \( 2x^3+8x^2-3x-12=0 \).

Mamy do czynienia z równaniem typu \( W(x)=0 \), gdzie \( W \) to wielomian. Istotą zadania jest zatem znalezienie pierwiastków wielomianu. Rozwiążemy to zadanie sprowadzając wielomian do postaci iloczynowej, czyli postaci: \[ W(x)=\class{color1}{a}(x-\class{color2}{x_1})(x-\class{color2}{x_2})\cdot\dots \] Gdzie liczby \( \class{color2}{x_1}, \class{color2}{x_2}, \dots \) to miejsca zerowe wielomianu (czyli szukane miejsca, dla których \( W(x)=0 \)). Wykonujemy więc działania: \[ 2x^3+8x^2-3x-12=2x^2\cdot x+2x^2\cdot 4 - (3x+12)\class{mathHint hintWyciagnieciePrzedNawias}{=}\\ \class{mathHint hintWyciagnieciePrzedNawias}{=} 2x^2(x+4)-(3\cdot x + 3\cdot 4)=2x^2(x+4)-3(x+4)\class{mathHint hintWyciagnieciePrzedNawias}{=}\\ \class{mathHint hintWyciagnieciePrzedNawias}{=}(2x^2-3)(x+4) \] Pierwszy czynnik iloczynu to funkcja kwadratowa \( 2x^2-3 \). Sprowadzimy ją do postaci iloczynowej licząc jej pierwiastki \[ \begin{matrix} 2x^2-3=0 & /+3 \end{matrix}\\ \begin{matrix} 2x^2=3 & /:2 \end{matrix} \\ \begin{matrix} x^2=\frac{3}{2} & /\sqrt{\hspace{1em}} \end{matrix} \\ |x|=\sqrt{\frac{3}{2}}\class{mathHint hintRozPierwWzglDziel}{=}\frac{\sqrt{3}}{\sqrt{2}}\class{mathHint hintUsunNiewymZMian}{=} \frac{\sqrt{3}}{\sqrt{2}}\cdot \frac{\sqrt{2}}{\sqrt{2}}=\\ = \frac{\sqrt{3}\sqrt{2}}{\sqrt{2}^2} \class{mathHint hintRozPierwWzglMnoz hintKwadratPierwiastka}=\frac{\sqrt{6}}{2} \] Mamy \[ |x|=\frac{\sqrt{6}}{2} \\ x=\frac{\sqrt{6}}{2} \vee x=-\frac{\sqrt{6}}{2} \] Współczynnik \( a \) funkcji \( 2x^2-3 \) to \( 2 \), zatem funkcja ta w postaci iloczynowej będzie miała postać \( 2(x-\frac{\sqrt{6}}{2})(x+\frac{\sqrt{6}}{2}) \).
Wielomian możemy więc zapisać: \[ (2x^2-3)(x+4)=2(x-\frac{\sqrt{6}}{2})(x+\frac{\sqrt{6}}{2})(x+4) \] Odczytujemy miejsca zerowe: \[ x_1=\frac{\sqrt{6}}{2}\\ x_2=-\frac{\sqrt{6}}{2}\\ x_3=-4 \] Odpowiedź: rozwiązania równania \( 2x^3+8x^2-3x-12=0 \) to liczby \( \frac{\sqrt{6}}{2}, -\frac{\sqrt{6}}{2}, -4 \).

Drukuj

Polub nas
Rozwijaj swoje SocialMedia!
Skorzystaj z Naszego nowego Projektu!
Kup Like na Facebook, Instagram, Youtube!