Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt
Korepetycje u autora przez internet!
Szukasz korepetycji na najwyższym poziomie bez wychodzenia z domu w świetnej cenie? Kliknij tutaj
Przydatne materiały
Kontakt z nami
Kontakt
ZadaniaMatematyczne.pl
zadaniamatematyczne@op.pl
Napisz wiadomość

Rozwiązania zadań z tego działu

Zadanie nr 19, matura 2013 maj

Odległość między środkami okręgów o równaniach \( (x+1)^2+(y-2)^2=9 \) oraz \( x^2 + y^2 = 10 \) jest równa
A. \( \sqrt{5} \) B. \( \sqrt{10}-3 \) C. \( 3 \) D. \( 5 \)

Zadanie nr 20, matura próbna 2012 listopad

Równanie \( (x+6)^2+y^2=4 \) opisuje okrąg o środku w punkcie \( S \) i promieniu \( r \). Wówczas:
A. \( S=(-6,0) \), \( r=4 \) B. \( S=(6,0) \), \( r=4 \)
C. \( S=(6,0) \), \( r=2 \) D. \( S=(-6,0) \), \( r=2 \)

Zadanie nr 20, matura próbna 2010 listopad

Dane są punkty \( S=(2,1) \), \( M=(6,4) \). Równanie okręgu o środku \( S \) i przechodzącego przez punkt \( M \) ma postać
A. \( (x-2)^2+(y-1)^2=5 \) B. \( (x-2)^2+(y-1)^2=25 \)
C. \( (x-6)^2+(y-4)^2=5 \) D. \( (x-6)^2+(y-4)^2=25 \)

Zadanie nr 21, matura 2010 maj

Wskaż równanie okręgu o promieniu \(6\).
A. \( x^2+y^2=3 \) B. \( x^2+y^2=6 \)
C. \( x^2+y^2=12 \) D. \( x^2+y^2=36 \)

Zadanie nr 21, matura 2012 sierpień

Dany jest okrąg o równaniu \( (x+4)^2+(y-6)^2=100 \). Środek tego okręgu ma współrzędne
A. \( (-4,-6) \) B. \( (4,6) \) C. \( (4,-6) \) D. \( (-4,6) \)

Zadanie nr 23, matura 2012 maj

Na okręgu o równaniu \((x-2)^2+(y+7)^2=4\) leży punkt
A. \( A=(-2,5) \) B. \( B=(2,-5) \) C. \( C=(2,-7) \) D. \( D=(7,-2) \)

Zadanie nr 30, matura próbna 2012 listopad

Prosta \( y=x+4 \) przecina okrąg o równaniu \( (x+1)^2+(y-2)^2=25 \) w punktach \( A \) i \( B \). Oblicz współrzędne punktów \( A \) i \( B \), a następnie oblicz obwód trójkąta \( ABS \), gdzie \( S \) jest środkiem danego okręgu.
Polub nas