Matura z matematyki

Matematyka - zadania z matematyki

Zadania matematyczne Mapa strony Kontakt
polubienia

Zadanie nr 18, matura 2012 sierpień

Długość boku trójkąta równobocznego jest równa \( 24\sqrt{3} \). Promień okręgu wpisanego w ten trójkąt jest równy
A. \( 36 \) B. \( 18 \) C. \( 12 \) D. \( 6 \)

Narysujmy rysunek dodatkowo zaznaczając promienie okręgu leżące na wysokościach trójkąta równobocznego. r Przecięcia wysokości w trójkącie dzielą wysokości na odcinki o proporcjach \( 2:1 \). Zatem promień okręgu będzie równy jednej trzeciej wysokości. Niech wysokość trójkąta ma długość \( h \), wtedy \[ r=\frac{1}{3}h \] W trójkącie równobocznym wysokość można policzyć używając wzoru \[ h=\frac{a\sqrt{3}}{2} \] Gdzie \( a \) to długość boków trójkąta. Jako że trójkąt z zadania ma boki długości \( 24\sqrt{3} \), to mamy \[ h=\frac{24\sqrt{3}\sqrt{3}}{2}=\frac{24\cdot3}{2}=12\cdot3=36 \] Możemy zatem policzyć długość promienia okręgu wpisanego w ten trójkąt korzystając z wcześniej wyprowadzonego wzoru \[ r=\frac{1}{3}h\\ r=\frac{1}{3}\cdot 36=12 \]

Prawidłowa odpowiedź to C.

Drukuj

Polub nas
Rozwijaj swoje SocialMedia!
Skorzystaj z Naszego nowego Projektu!
Kup Like na Facebook, Instagram, Youtube!
like like like