Zgodnie z definicją pierwiastka funkcji to, że liczba \( -3 \) jest pierwiastkiem wielomianu \( W(x) \) znaczy tyle, że \( W(-3)=0 \). Tzn., że wartość wielomianu dla argumentu \( -3 \) jest równa zero. Sprawdzimy zatem dla jakiej wartości \( m \) mamy taką sytuację. \[ W(-3)=0\\ W(-3)=(-3)^3+3(-3)^2+m(-3)-9 \] Połączymy te dwa równania w jedno \[ (-3)^3+3(-3)^2+m(-3)-9=0\\ -27+3\cdot9-3m-9=0\\ -27+27-3m-9=0\\ \begin{matrix} -3m-9=0 & /+9 \end{matrix}\\ \begin{matrix} -3m=9 & /:(-3) \end{matrix}\\ m=\frac{9}{-3}=-3 \]
Odpowiedź: Liczba \( -3 \) jest pierwiastkiem wielomianu \( W(x) \) dla \( m=-3 \).