Zredukuj wyrazy podobne.
a) \( 2x^2-5x-3-4x^2+2x-7 \)
|
b) \( 1-2x-3x^2+x^3-3-3x+x^2-x^3 \)
|
c) \( x^3-5x-2+x^3-4x^2+3 \)
|
d) \( 2x^4-4x^3-4x+2-3-5x^2-4x^3-2x^2 \)
|
Oznaczymy wyrazy podobne kolorami i rozwiążemy
-
a) \( 2x^2-5x-3-4x^2+2x-7 \)
\[
\class{color1}{2x^2}\class{color2}{-5x}-3\class{color1}{-4x^2}\class{color2}{+2x}-7=
\class{color1}{-2x^2}\class{color2}{-3x}-10
\]
-
b) \( 1-2x-3x^2+x^3-3-3x+x^2-x^3 \)
\[
1\class{color1}{-2x}\class{color2}{-3x^2}\class{color3}{+x^3}-3\class{color1}{-3x}\class{color2}{+x^2}\class{color3}{-x^3}=\class{color2}{-2x^2}\class{color1}{-5x}-2
\]
-
c) \( x^3-5x-2+x^3-4x^2+3 \)
\[
\class{color3}{x^3}\class{color1}{-5x}-2\class{color3}{+x^3}\class{color2}{-4x^2}+3
=\class{color3}{2x^3}\class{color2}{-4x^2}\class{color1}{-5x}+1
\]
-
d) \( 2x^4-4x^3-4x+2-3-5x^2-4x^3-2x^2 \)
\[
\class{color4}{2x^4}\class{color3}{-4x^3}\class{color1}{-4x}+2-3\class{color3}{-4x^3}\class{color2}{-2x^2}=\class{color3}{-8x^3}\class{color2}{-5x^2}\class{color1}{-4x}-1
\]