\[ \text{log}_\class{color1}{a}1=0\\ \text{log}_\class{color1}{a}\class{color1}{a}=1\\ \class{color1}{a}^{\text{log}_\class{color1}{a}\class{color2}{b}}=\class{color2}{b}\\ \text{log}_\class{color1}{a}{\class{color1}{a}^\class{color2}{b}}=\class{color2}{b} \\ \text{log}_\class{color1}{a}(\class{color2}{b}\cdot \class{color3}{c})=\text{log}_\class{color1}{a}\class{color2}{b}+\text{log}_\class{color1}{a}\class{color3}{c} \\ \text{log}_\class{color1}{a}\frac{\class{color2}{b}}{\class{color3}{c}}=\text{log}_\class{color1}{a}\class{color2}{b}-\text{log}_\class{color1}{a}\class{color3}{c} \\ \text{log}_\class{color1}{a}\class{color2}{b}=\frac{\text{log}_\class{color3}{c}\class{color2}{b}}{\text{log}_\class{color3}{c}\class{color1}{a}}\\ \text{log}_\class{color1}{a}\class{color2}{b}=\frac{1}{\text{log}_\class{color2}{b}\class{color1}{a}} \]
Powrót